Buyer Inspired Meta-Heuristic Optimization Algorithm
نویسندگان
چکیده
منابع مشابه
A Meta-heuristic Algorithm for Global Numerical Optimization Problems inspired by Vortex in fluid physics
One of the most important issues in engineering is to find the optimal global points of the functions used. It is not easy to find such a point in some functions due to the reasons such as large number of dimensions or inability to derive them from the function. Also in engineering modeling, we do not have the relationships of many functions, but we can input and output them as a black box. The...
متن کاملSIZING OPTIMIZATION OF TRUSS STRUCTURES WITH NEWTON META-HEURISTIC ALGORITHM
This study is devoted to discrete sizing optimization of truss structures employing an efficient discrete evolutionary meta-heuristic algorithm which uses the Newton gradient-based method as its updating scheme and it is named here as Newton Meta-heuristic Algorithm (NMA). In order to enable the NMA population-based meta-heuristic to effectively explore the discrete design space, a term contain...
متن کاملA NOVEL META-HEURISTIC ALGORITHM: TUG OF WAR OPTIMIZATION
This paper presents a novel population-based meta-heuristic algorithm inspired by the game of tug of war. Utilizing a sport metaphor the algorithm, denoted as Tug of War Optimization (TWO), considers each candidate solution as a team participating in a series of rope pulling competitions. The teams exert pulling forces on each other...
متن کاملNEW META-HEURISTIC OPTIMIZATION ALGORITHM USING NEURONAL COMMUNICATION
A new meta-heuristic method, based on Neuronal Communication (NC), is introduced in this article. The neuronal communication illustrates how data is exchanged between neurons in neural system. Actually, this pattern works efficiently in the nature. The present paper shows it is the same to find the global minimum. In addition, since few numbers of neurons participate in each step of the method,...
متن کاملMeta-optimization of Quantum-Inspired Evolutionary Algorithm
In this paper, a meta-optimization algorithm, based on Local Unimodal Sampling (LUS), has been applied to tune selected parameters of QuantumInspired Evolutionary Algorithm for numerical optimization problems coded in real numbers. Tuning of the following two parameters has been considered: crossover rate and contraction factor. Performance landscapes of the algorithm meta-fitness have been app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Computer Science
سال: 2020
ISSN: 2299-1093
DOI: 10.1515/comp-2020-0101